IOPscience

Home Search Collections Journals About Contact us My IOPscience

Band structure of new superconducting AIB_2 -like ternary silicides $M(AI_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ (where M = Ca, Sr and Ba)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 L541 (http://iopscience.iop.org/0953-8984/15/33/105)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.125 The article was downloaded on 19/05/2010 at 15:03

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) L541–L545

LETTER TO THE EDITOR

Band structure of new superconducting AlB_2 -like ternary silicides $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ (where M = Ca, Sr and Ba)

I R Shein, N I Medvedeva and A L Ivanovskii

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620219, Ekaterinburg, Russia

E-mail: shein@ihim.uran.ru

Received 8 December 2002 Published 8 August 2003 Online at stacks.iop.org/JPhysCM/15/L541

Abstract

The electronic band structures of the new superconducting ternary silicides $M(A_{0.5}Si_{0.5})_2$ (where M = Ca, Sr, Ba; A = Al, Ga)—with T_c up to 7.7 K—in the AlB₂-type structure have been investigated using the full-potential LMTO method. The calculations showed that the trend in transition temperatures does not follow the changes in the density d-states at the Fermi level and is probably associated with phonon-mode frequencies.

The discovery of superconductivity (SC) in layered AlB₂-like MgB₂ ($T_c \sim 39$ K) [1] and the creation of promising materials based on them [2–4] have attracted a great deal of interest in related compounds because of their potential as new superconductors. One of the remarkable results is the synthesis, by the floating zone and Ar arc-melting methods, of new ternary silicides Sr(Ga_xSi_{1-x})₂ [6], Ca(Al_{0.5}Si_{0.5})₂ [7] and (Ca, Sr, Ba)(Ga_xSi_{1-x})₂ [7, 8], except for Ba(Al_xSi_{1-x})₂, with transition temperatures T_c ranging from 3.3 to 7.7 K. They have the AlB₂-type structure, in which Si and (Al, Ga) atoms are arranged in honeycomb sheets, and alkaline-earth metals are intercalated between them. Furthermore, a series of (Ca, Sr, Ba)(Al_xSi_{1-x})₂ compounds was prepared by varying the proportion Al/Si (0.6 < x < 1.2) [9], and the maximum T_c for these phases appears at the 1:1:1 composition.

Electrical resistivity and dc magnetization results [5–8] revealed that these layered silicides are superconductors of type II. Seebeck coefficient measurements for (Ca, Sr, Ba)(Al_xSi_{1-x})₂ [9] indicate that their carriers are predominantly electrons, in contrast to holes in MgB₂ [1–4]. The observed difference in the values of T_c for these phases can be attributed qualitatively to the changes in the densities of states at E_F , $N(E_F)$ [8].

Recently, the first study of the band structures of $Sr(Ga_xSi_{1-x})_2$ and $Ca(Al_{0.5}Si_{0.5})_2$ silicides (x = 0.375, 0.5 and 0.625) has been undertaken [10]. It has been shown that the SC properties may be due to the high density of (Ca, Sr)d states at the Fermi level. In this letter we

	(where M	= Ca, Sr, Ba; A = Al, Ga).				
Parameters	$Ca(Al_{0.5}Si_{0.5})_2$	$Sr(Al_{0.5}Si_{0.5})_2$	Ba(Al _{0.5} Si _{0.5}) ₂	$Ca(Ga_{0.5}Si_{0.5})_2$	Sr(Ga _{0.5} Si _{0.5}) ₂	$Ba(Ga_{0.5}Si_{0.5})_2$
a	4.1905	4.2407	4.2974	4.1201	4.1875	4.2587
c/a	1.0498	1.1171	1.1967	1.0777	1.1331	1.1985
M-s	0.028	0.061	0.083	0.017	0.034	0.044
M-p	0.096	0.138	0.199	0.073	0.036	0.076
M-d	0.663	1.344	1.460	0.594	0.936	1.079
M-f	0.0	0.0	0.134	0.0	0.0	0.108
Al(Ga)-s	0.023	0.022	0.018	0.022	0.017	0.017
Al(Ga)-p	0.101	0.345	0.404	0.104	0.162	0.219
Al(Ga)-d	0.033	0.043	0.038	0.015	0.018	0.016
Si-s	0.023	0.013	0.009	0.019	0.014	0.013
Si-p	0.116	0.241	0.237	0.105	0.163	0.164
Si-d	0.044	0.067	0.066	0.042	0.051	0.051
Total	1.127	2.273	2.611	0.992	1.431	1.757
<i>T</i> _c (K)	7.7 [6] 7.8 [9]	4.2 [8]	<2 [8, 9]	4.3 [7]	5.1 [8, 9]	3.9 [8]

Table 1. The lattice parameters (a, Å, c/a [8]), total and site-projected ℓ -decomposed DOS at the Fermi level ($N(E_{\rm F})$, states eV⁻¹), and transition temperatures ($T_{\rm c}$, K) of silicides M(A_{0.5}Si_{0.5})₂ (where M = Ca, Sr, Ba; A = Al, Ga).

report the results of the first-principles calculations for all known 1:1:1 ternary isostructural and isoelectronic compounds $M(A_{0.5}Si_{0.5})_2$ (where M = Ca, Sr, Ba; A = Al, Ga) and analyse the band structure parameters in connection with the SC properties. The band structures of the above silicides were calculated using the scalar relativistic full-potential LMTO method [11] within the generalized gradient approximation [12]. The basis functions, electron density and potential were calculated without any shape approximation. They were expanded in a spherical harmonic series (with a 'cut-off' of $l_{max} = 6$) inside non-overlapping muffin-tin spheres and in a Fourier series in the interstitial region. The radial basis functions within the muffin-tin spheres were linear combinations of radial wavefunctions and their energy derivatives calculated at energies appropriate to a particular site and principal and orbital quantum numbers. Outside the muffin-tin spheres, the basis functions were combinations of Neuman or Hankel functions with a non-zero kinetic energy [11]. For bands and densities of states (DOS) in the irreducible wedge of the Brillouin zone, we used 640 special *k*-points. The lattice parameters that were used are listed in table 1.

The energy bands, total DOS and site projected ℓ -decomposed LDOS of M(A_{0.5}Si_{0.5})₂ are similar (see figures 1 and 2). For example, the valence band (VB) for Ca(Al_{0.5}Si_{0.5})₂ has a width of about 10 eV. The quasi-core s-like band located in the interval from 10.0 to 7.8 eV below the Fermi level is separated by a gap (~1.45 eV) from the hybrid (Al, Si)sp states, which form four $\sigma(2p_{x,y})$ and two $\pi(p_z)$ bands (see figure 1). The E(k) dependences for the $p_{x,y}$ and p_z bands differ considerably. For the $p_{x,y}$ -like bands, the most pronounced dispersion of E(k) is observed along the $k_{x,y}$ direction (Γ –K of the Brillouin zone (BZ)). These bands are of the quasi two-dimensional (2D) type. They form a quasi-flat zone along k_z (Γ –A). The (Al, Si) $p_{x,y}$ orbitals participate in strong covalent σ states to form 2D honeycomb network bonds of sp² type with the s states. The (Al, Si) p_z -like bands are responsible for weaker $\pi(p_z)$ interactions. These 3D-type bands have maximum dispersion in the direction $k_z(\Gamma$ –A). The s, p, d states of Ca are admixed to p-like bands. The $\sigma(p_{x,y})$ and $\pi(p_z)$ bands intersect at the Γ point of the BZ. It is important that the (Al, Si)p bands are located below E_F and do not contain any hole states like those in non-superconducting AlB₂ [2–4], which is isoelectronic to

Figure 1. Energy bands: (1), $Ca(Al_{0.5}Si_{0.5})_2$; (2), $Sr(Al_{0.5}Si_{0.5})_2$; (3), $Ba(Al_{0.5}Si_{0.5})_2$; (4), $Ca(Ga_{0.5}Si_{0.5})_2$; (5), $Sr(Ga_{0.5}Si_{0.5})_2$; (6), $Ba(Ga_{0.5}Si_{0.5})_2$.

Figure 2. Total and site-projected ℓ -decomposed DOS of: (1), Ca(Al_{0.5}Si_{0.5})₂; (2), Sr(Al_{0.5}Si_{0.5})₂; (3), Ba(Al_{0.5}Si_{0.5})₂.

 $Ca(Al_{0.5}Si_{0.5})_2$. The main contribution to the $Ca(Al_{0.5}Si_{0.5})_2$ DOS in the vicinity of the Fermi level is made by the Ca 3d states: their contribution to $N(E_F)$ is about 59% compared with 9 and 10% for Al-p and Si-p states, respectively.

The most obvious consequence of the alkaline-earth metal variation (Ca \rightarrow Sr \rightarrow Ba) is the decrease in the VB width from 10.0 (Ca(Al_{0.5}Si_{0.5})₂) to ~9.1 eV (Ba(Al_{0.5}Si_{0.5})₂) caused by the increased cell volume. The (Sr, Ba)d states form nearly flat bands in the direction L–H close to $E_{\rm F}$. As a result, sharp peaks in the LDOS appear for Sr(Al_{0.5}Si_{0.5})₂ and Ba(Al_{0.5}Si_{0.5})₂ (figure 2). $N(E_{\rm F})$ increases more than twofold when going from

 $Ca(Al_{0.5}Si_{0.5})_2$ to $Ba(Al_{0.5}Si_{0.5})_2$. It is worth noting that the increase in $N(E_F)$ is due to the simultaneous growth of the LDOS of valence states for all atoms in the silicides (see table 1).

The differences in the band structures of $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ are revealed by an increased dispersion of the σ , π -bands in the A–L–H directions and a decrease in the band gap (at ~1.0–0.9 eV) between the s- and p-like bands for $M(Ga_{0.5}Si_{0.5})_2$ compared to $M(Al_{0.5}Si_{0.5})_2$. The VB width of $M(Ga_{0.5}Si_{0.5})_2$ increases by ~1.3–1.0 eV. The change in the alkaline-earth metal in the sequence Ca \longrightarrow Sr \longrightarrow Ba causes an increase in the $N(E_F)$, the M-d states making the main contribution to the near-Fermi DOS (see table 1). Thus, the following findings have been obtained for $M(A_{0.5}Si_{0.5})_2$ compared to MgB₂:

- (a) the filling of bonding $p_{x,y}$ bands and the absence of σ holes;
- (b) an increase in covalent interactions (due to p-d hybridization) between graphene-like (Al, Si) or (Ga, Si) sheets and metal hexagonal layers; and
- (c) the principal change in $N(E_{\rm F})$, where the alkaline-earth metal d states make the main contributions (~55–60%).

According to the experimental data [5–9]:

- (a) in $M(Al_{0.5}Si_{0.5})_2$ silicides, T_c decreases monotonically when M changes from Ca to Ba;
- (b) in M(Ga_{0.5}Si_{0.5})₂ silicides, T_c changes slightly (within 3.9–5.1 K) and is a maximum (5.1 K) for Sr(Ga_{0.5}Si_{0.5})₂.

In the framework of the BCS theory, T_c can be estimated by using the McMillan equation $T_c \sim \langle \omega \rangle \exp\{f(\lambda)\}$, where $\langle \omega \rangle$ is the averaged phonon frequency (inversely proportional to the atomic masses), λ is the electron–phonon coupling constant ($\lambda = N(E_F) \langle I^2 \rangle / \langle M \omega^2 \rangle$, where $\langle I^2 \rangle$ is the electron–phonon matrix element and $\langle M \omega^2 \rangle$ does not depend on the mass and is determined by force constants). The values of $N(E_F)$ (like the contributions to $N(E_F)$ from M-d and (Si, Al, Ga)p states) obtained here showed that:

- (a) in silicides $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$, $N(E_F)$ increases monotonically when the alkaline-earth metal changes from Ca to Ba (opposite to the trend in T_c [5–9]);
- (b) the value of $N(E_F)$ in M(Al_{0.5}Si_{0.5})₂ silicides is higher than that in M(Ga_{0.5}Si_{0.5})₂ silicides based on the same M.

This does not correlate with the observed critical temperatures either. Therefore the supposition [8] that there is a direct dependence between T_c and $N(E_F)$ for 'strong stoichiometric' silicides M(A_{0.5}Si_{0.5})₂ is erroneous.

It may be supposed that the main factor determining the variation in T_c in a number of isostructural and isoelectronic compounds $M(A_{0.5}Si_{0.5})_2$ is the change in phonon frequencies depending on the atomic masses. Additionally, the shape of the DOS (and the value of $N(E_F)$) may be changed due to disorder in the distribution of (Al, Ge)/Si atoms in honeycomb layers. As a result, alkaline-earth metals will be in different trigonal-prismatic positions. This may lead to a splitting of the near-Fermi bands and to a decrease in $N(E_F)$. This effect will be more pronounced for Sr- and Ba-containing silicides where, for the 'ideal ordering' state, the $N(E_F)$ is determined by narrow intensive DOS peaks. The possibility of chemical disordering and inhomogeneity in arc-melted silicides was noted in [7].

This work was supported by the RFBR (grant 02-03-32971).

References

- [1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
- [2] Ivanovskii A L 2001 Russ. Chem. Rev. 71 203
- [3] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 R115
- [4] Canfield P C and Budko S L 2002 Phys. World 15 29
- [5] Imai M, Abe E, Ye J, Nishida K, Kimura T, Honma K, Abe H and Kitazawa H 2001 Phys. Rev. Lett. 87 077003
- [6] Imai M, Nishida K, Kimura T and Abe H 2002 Appl. Phys. Lett. 80 1019
- [7] Imai M, Nishida K, Kimura T and Abe H 2002 Physica C 377 96
- [8] Imai M, Nishida K, Kimura T, Kitazawa H, Abe H, Kito H and Yoshii K 2002 Preprint cond-mat/0210692
- [9] Lorenz B, Lenzi J, Cmaidalka J, Meng R L, Sun Y Y, Xue Y Y and Chu C W 2002 Preprint cond-mat/0208341
- [10] Shein I R, Ivanovskaya V V, Medvedeva N I and Ivanovskii A L 2002 JETP Lett. 76 189
- [11] Savrasov S Y 1996 Phys. Rev. B 54 16470
- [12] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. B 77 3865